Lung Cancer Early Detection Group

COPYRIGHT ©2018 BY LUNG CANCER EARLY DETECTION GROUP
Department of Oncology
www.munoz-espinlab.com

Published Work

Key publications

Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3

June 25, 2019

Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence.

Cell Reports

A versatile drug delivery system targeting senescent cells

July 1, 2018

Senescent cells accumulate in multiple aging‐associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal β‐galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto‐oligosaccharides. We show that gal‐encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy‐induced senescence, gal‐encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal‐encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal‐encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence‐associated disorders.

Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, Llanos S, Chaib S, Muñoz-Martín M, Ucero AC, Garaulet G, Mulero F, Dann SG, VanArsdale T, Shields DJ, Bernardos A, Murguía JR, Martínez-Máñez R, Serrano M.

EMBO Mol Med

In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution

January, 2019

Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.

Barbouti A, Evangelou K, Pateras IS, Papoudou-Bai A, Patereli A, Stefanaki K, Rontogianni D, Muñoz-Espín D, Kanavaros P, Gorgoulis VG.

Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence.

February 20, 2018

Cellular senescence is an important anticancer mechanism that restricts proliferation of damaged or premalignant cells. Cellular senescence also plays an important role in tissue remodeling during development. However, there is a trade-off associated with cellular senescence as senescent cells contribute to aging pathologies. The naked mole rat (NMR) (Heterocephalus glaber) is the longest-lived rodent that is resistant to a variety of age-related diseases. Remarkably, NMRs do not show aging phenotypes until very late stages of their lives. Here, we tested whether NMR cells undergo cellular senescence. We report that the NMR displays developmentally programmed cellular senescence in multiple tissues, including nail bed, skin dermis, hair follicle, and nasopharyngeal cavity. NMR cells also underwent cellular senescence when transfected with oncogenic Ras. In addition, cellular senescence was detected in NMR embryonic and skin fibroblasts subjected to γ-irradiation (IR). However, NMR cells required a higher dose of IR for induction of cellular senescence, and NMR fibroblasts were resistant to IR-induced apoptosis. Gene expression analyses of senescence-related changes demonstrated that, similar to mice, NMR cells up-regulated senescence-associated secretory phenotype genes but displayed more profound down-regulation of DNA metabolism, transcription, and translation than mouse cells. We conclude that the NMR displays the same types of cellular senescence found in a short-lived rodent.

Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M, de Magalhaes JP, Nevo E, Gladyshev VN, Seluanov A, Gorbunova V.

PNAS

An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo

July 5, 2017

A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.

Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, Muñoz-Espín D, Serrano M, Martínez-Máñez R, Sancenón F

J Am Chem Soc

Robust, universal biomarker assay to detect senescent cells in biological specimens

February 16, 2017

Cellular senescence contributes to organismal development, aging, and diverse pathologies, yet available assays to detect senescent cells remain unsatisfactory. Here, we designed and synthesized a lipophilic, biotin-linked Sudan Black B (SBB) analogue suitable for sensitive and specific, antibody-enhanced detection of lipofuscin-containing senescent cells in any biological material. This new hybrid histo-/immunochemical method is easy to perform, reliable, and universally applicable to assess senescence in biomedicine, from cancer research to gerontology.

Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D, Kastrinakis NG, Pouli N, Marakos P, Townsend P, Serrano M, Bartek J, Gorgoulis VG.

Aging Cell

Cellular senescence: from physiology to pathology

July 15, 2014

Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events - senescence, followed by clearance and then regeneration - may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.

Muñoz-Espín D, Serrano M

Nat Rev Mol Cell Biol

Programmed cell senescence during mammalian embryonic development

November 21, 2013

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.

Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M.

Cell